
551 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

A General Framework for Concurrent
Simulation of Neural Network Models

Gregory L. Heileman, Member, IEEE, Michael Georgiopoulos, Member, IEEE, and William D. Roome, Member, IEEE

Abstract-The analysis of complex neural network models via
analytical techniques is often quite difficult due to the large
numbers of components involved, and the nonlinearities asso-
ciated with these components. For this reason, simulation is
seen as an important tool in neural network research. In this
paper we present a framework for simulating neural networks as
discrete event nonlinear dynamical systems. This includes neural
network models whose components are described by continuous-
time differential equations, or by discrete-time difference equa-
tions. Specifically, we consider the design and construction of a
concurrent object-oriented discrete event simulation environment
for neural networks. The use of an object-oriented language
provides the data abstraction facilities necessary to support mod-
ification and extension of the simulation system at a high level
of abstraction. Furthermore, the ability to specify concurrent
processing supports execution on parallel architectures. The use
of this system is demonstrated by simulating a specific neural
network model on a general-purpose parallel computer.

Index Terms- Concurrent simulation, neural networks, non-
linear dynamical systems, object-oriented programming, parallel
processing .

I. INTRODUCTION

RTIFICIAL neural networks are biologically inspired A computing models characterized by large numbers of
densely connected computational elements. The tremendous
interest that has recently surfaced regarding these models
has led researchers to propose their use in a wide range of
application areas. Because of the analytical intractability of
these models, a large portion of the research in the field
of neural computation involves simulation. Furthermore, the
parallel nature of neural network models makes them quite
amenable for simulation on parallel computing architectures.
In fact, the exploitation of this inherent parallelism is consid-
ered a necessity if very large neural network models are to be
investigated [l]. In this paper we consider the development of
simulation capabilities that support both rapid prototyping of
neural network models, as well as their execution on parallel
computing platforms. The design choices made during this
development were influenced by the flexibility versus speedup
trade-offs discussed below.

Manuscript received August 28, 1991; revised March 12, 1992. recom-
mended by E. Gelenbe. This research was supported in part by grants from
Sandia National Laboratories under Contract 87-5002, the Florida High
Technology and Industry Council, and the Division of Sponsored Research
at the University of Central Florida. Recommended by E. Gelenbe.

G. L. Heileman is with the Department of Electrical and Computer
Engineering, University of New Mexico, Albuquerque, NM 87131.

M. Georgiopoulos is with the Department of Electrical Engineering, Uni-
versity of Central Florida, Orlando, FL 32816.

W. D. Roome is with AT&T Bell Laboratories, Murray Hill, NJ 07974.
IEEE Log Number 9200611.

The target architecture for implementing parallel neural net-
work simulations will either be a special-purpose or general-
purpose parallel computer. Maximum speedup is currently
achieved by designing special-purpose computers that directly
implement neural network models using VLSI techniques
[2]-[5]; however, the ability to modify the model is sacrificed
once the neural network is “cast” into hardware. In addition,
the time required to design, develop, and test such a system
is typically on the order of months. Thus, the use of special-
purpose computers is most appropriate when the specific form
of a neural network model intended for use in a particular
application has been finalized.

The other alternative is to utilize general-purpose computing
platforms that are designed to execute a wide variety of
applications. In this case, the model is created in software, and
some degree of speedup is sacrificed for increased flexibility.
Furthermore, a number of different approaches to the simula-
tion of a given model on a general-purpose parallel computer
can be considered. In each case, the trade-off is again one
of speedup versus flexibility. First, a model can be directly
mapped onto the parallel hardware using a programming
language specifically designed for that particular machine
[6]-[8]. This will typically yield the largest possible speedup
when utilizing a general-purpose computer. The difficulty with
this approach is that it requires the implementor to possess an
understanding of the underlying hardware, including the pro-
cessor interconnection scheme and communication protocol.
Consequently, this mapping process is both time consum-
ing and machine specific. An alternative is to implement
the application using a general-purpose parallel programming
language. This allows the compiler to automatically map
the application onto a particular computer, thereby allowing
the program to run on any parallel machine for which the
compiler is available. In general, a direct mapping is more
efficient than this automatic mapping; however, the use of a
general-purpose concurrent programming language allows one
to specify parallel operations at a higher level of abstraction.

In this paper, we investigate the simulation of neural net-
work models using a general and easily modifiable simula-
tion model at the level of a general-purpose object-oriented
concurrent programming language. We believe that this is
an important level for performing neural network research
because it allows investigators to easily and rapidly test
new ideas while providing the processing power necessary
to investigate nontrivial models. Furthermore, once a network
architecture has been realized and tested through simulation,
it is possible to directly implement it using special-purpose

0162-8828192$03.00 0 1992 IEEE

- -

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

hardware to achieve maximum speedup.
The organization of this paper is as follows: In Section I1

we discuss concurrent object-oriented programming in general,
and then consider a specific language, Concurrent C++. A
general model for neural computation is then presented in
Section 111. This model forms the framework for the generic
Concurrent C t + neural network simulation system discussed
in Section IV. In Section IV we also discuss how the con-
current processes associated with this simulation model are
scheduled and synchronized so that useful parallel simula-
tions can be performed. In Section V we consider how the
concurrent simulation model developed in Section IV can
be extended through inheritance to implement specific neural
network models. We then demonstrate the simulation of a
specific model on a general-purpose parallel computer. Finally,
in Section VI we conclude with a discussion of our results.

11. CONCURRENT OBJECT-ORIENTED PROGRAMMING

Concurrent object-oriented programming languages utilize
object-oriented programming capabilities while providing the
ability to specify concurrent execution. From a software engi-
neering perspective, the data abstraction capabilities offered
by the object-oriented methodology are important because
they facilitate the building of reusable and easily extendable
software modules. As such, object-oriented programming tech-
niques are currently being considered for addressing issues
involved in “programming in the large.” Another advantage
is that the decomposition techniques used in the design of an
object-oriented program are consistent with those used in the
design of concurrent programs.

The concurrent object-oriented language used to implement
the simulation system discussed in this paper was the Con-
current C++ programming language developed at AT&T Bell
Laboratories. This language was created by integrating the
object-oriented language C++, and the concurrent program-
ming language Concurrent C. Implementation issues involved
in this merger are discussed in [9].

Below we briefly discuss some of the facilities available
in Concurrent C++. We will proceed by first discussing those
facilities particular to C++, followed by those particular to
Concurrent C. All of the facilities discussed are available
in Concurrent C++. More detailed discussions of the C t +
programming language can be found in [lo] and [l l] . Detailed
discussions of Concurrent C and Concurrent C++ can be found
in [12].

Computation in object-oriented programs centers around
the manipulation of class objects. A class can be defined as
an implementation of an abstract data type [13]. Recall that
an abstract data type includes a definition of both the data
elements, as well as the operations that may be performed
on those data elements. An object is a particular instance
of a class. For example, we may implement a stack using
a class. In this case, the class will define what type of data
elements can be stored on the stack, and how the operations
(i.e., push, pop, etc.) will be implemented. The routines used
to implement these operations are referred to as member
functions. An instance of the stack class (i.e., a stack object)

must be created if we wish to use it. Messages sent to this
object may invoke specific member functions that operate on
the stack data elements.

In C+t , class declarations consist of two parts: a specifi-
cation and a body. The class specification serves as the “user
interface” to the class. Class specifications have the form

class c l a s s name : d e r i v a t i o n l i s t {
private:
p r i v a t e members
protected:
p r o t e c t e d members
public :
p u b l i c members

1;
where the members of a class may be either data elements or
functions. Class members specified as private are not visible
to elements external to the class, while public members are.
Protected class members are treated as if they were private
class members, with one exception. Objects of derived classes
(discussed below) treat the protected members as if they were
public members. The second part of the class declaration, the
class body, consists of the bodies of member functions that
were declared but not defined in the class specification.

The derivation list in the class specification supports inher-
itance-one of the most important concepts found in object-
oriented programming languages. Inheritance allows one to
create a new class from existing classes. In this case, the new
class that is being declared (i.e., the derived class) is said to
be derived from the existing base classes. A derived class
inherits the members of its base classes, and may also add
new members. A derived class may also redefine any member
function provided by the base class by simply supplying a new
member function that has the same name as the old member
function in the base class. In this case, the new member
function in the derived class is said to overload the member
function with the corresponding name in the base class. This
allows different meanings to be attached to the same member
function name; which member function is invoked when the
name is called in a program depends upon the specific class
being used. Furthermore, if the overloaded function is declared
virtual in the base class, then the overloaded function will be
dynamically bound to an object at run-time. This trait, known
as polymorphism, is utilized extensively in the neural network
simulation discussed in this paper.

Most concurrent programming languages are based on the
use of processes. A process has its own thread of execution,
stack, and machine registers. Thus, two processes may execute
simultaneously on separate processors, or they may be time-
sliced on a single processor. The concurrent programming
facilities provided by Concurrent C are extensions of the
Communicating Sequential Processes [141 and Distributed
Processes [15] models. These models also form the basis
for the concurrent programming facilities offered by the Ada
programming language.

In Concurrent C, a process definition consists of a specifi-
cation and a body. They have the form

process spec p r o c e s s name (p a r a m e t e r t y p e s
a n d n a m e s) {

t r a n s a c t i o n s

HEILEMAN et al.: A GENERAL FRAMEWORK

Tim Client Save

Fig. 1. A “time-line” diagram that illustrates how processes interact during
a synchronous transaction call. A solid line indicates that a process is running,
while a dotted line indicates that it is waiting.

Fig. 2. A general model for computation in neural networks.

operation concurrently only if a process is somehow associated
1; with that opera tion. process body process name(parameter names)
{

1
process code

111. A GENERAL MODELFOR NEURAL COMPUTATION
The process specification contains all the information neces-
sary to create and interact with processes of the type being
defined, while the process body contains the code (along with
the associated declarations and definitions) that is executed by
a process of that type.

Only the information given in the process specification is
visible to other processes. This information includes a list of
available transactions. Concurrent C processes communicate
by using transactions. These transactions can be either syn-
chronous or asynchronous. In the synchronous case, illustrated
in Fig. 1, a client process sends a message to a server process
requesting it to perform some service. The client process
then must wait for the server process to accept the message
and perform the desired service. Upon completion, the server
process returns some data to the client process which is then
free to resume execution. Thus, a synchronous transaction
requires both a synchronization between two processes, as
well as a bidirectional exchange of information. Note in Fig.
1 that the client process is “blocked” while the server is
servicing the transaction. This is not the case for asynchronous
transactions, the client process does not wait for the server

In this section we define a general model for neural com-
putation that serves as the framework for specifying virtually
any neural network paradigm. As we shall see in the following
sections, the ability to specify such a general model has
important implications in the object-oriented design of the
simulation system.

The architecture of a neural network model can be described
by a weighted directed graph in which the nodes of the graph
represent neurons, and the weighted edges represent a set of
internal dynamical parameters that generally correspond to
synaptic weights. A portion of such an architecture is depicted
in Fig. 2.

The state or activation value of each node in this system
can be modeled by a dynamical variable. We will represent
the activation value of the j th node, vi, using the variable
xj. Computation in a neural system is usually viewed as an
evolution through time of these node activation values. Thus, if
we assume continuous-valued states and equations of motion,
the state of the system may be described by the following
equations:

(1)
process to receive the message, and it is not possible for the
server process to return results to the client process. Thus, an

d
T Z - p (t) = Gj(%(t) ,uj(t))

asynchronous transaction involves a unidirectional exchange
of information, and no synchronization.

The Concurrent C++ programming language merges C++
and Concurrent C to produce a language with both data
abstraction and concurrent programming facilities. The ad-
vantages of using the data abstraction facilities offered by
classes in sequential programming apply equally to concurrent
programming. Specifically, classes can be used in Concurrent
C++ to hide the implementation details of a process, and to
ensure that the proper protocol for interacting with a process is
observed. In addition, the ability to use inheritance facilitates
the building of reusable concurrent program modules.

In most concurrent object-oriented programming language
models, objects are treated as sequential processes that respond
to messages sent to them. Furthermore, is it assumed that every
object may execute its operations concurrently [16]. This is not
necessarily true in Concurrent C++: an object may execute an

where T~ is a positive numerical constant that defines the time
scale over which the activation values change, and uj(t) is the
net input to node v j at time t. The form of the 4 function in
(1) will be determined by the particular neural network model
under consideration. Furthermore, for discrete-time models,
(1) is often approximated using first-order finite difference
equations. Particular forms for (1) can be found in [17].

Before discussing the generation of a node’s net input value,
we first must consider how a node generates an output value.
Associated with each node v j there is an output function,
f(xj), that is responsible for mapping the current state of
the node’s activity xj to an output signal o j as shown in Fig.
2. Commonly used forms for the function f are the logistic
function,

554 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

typedef trans async (*tptr)(); and the hardlimiting threshold function,

(3)

where typically ,B > y, and S is the threshold value. Note that
for large a, (2) can be approximated by (3) with p = 1 and
y = 0.

The output of node uuz is multiplied by weight waJ to produce
an input to node vJ, and the collection of inputs to uJ are
combined according to some operator to produce the net input
uJ. Typically, uJ is expressed as the following propagation
rule:

uj (t) = O a (t) w a J (t)
a

where wuzJ represents the value of the weighted edge incident
from U, and incident to vJ, and the sum is over all nodes
that are incident to uJ . In some models, positive and negative
weight values are considered excitatory and inhibitory connec-
tions, respectively, while in other models, there are separate
net input calculations for excitatory and inhibitory inputs.

We now consider the manner in which the dynamics of
system (1) can be modified so that learning occurs. The
parameters that are adjusted through learning in a neural
network are the weights w,]. Note that (1) is dependent on
wuzJ through uJ . Thus, a learning rule must specify the adaptive
dynamics that allow the weights of dynamical system (1) to
be modified so that for an initial input, the steady-state output
of the system represents the desired response. A constraint
that must be observed in all neural network systems is that
the modification of a given weight must be based solely on
information that is locally available to it. This constraint,
known as the locality constraint, implies that

where T~ is a positive numerical constant that defines the time
scale over which the weights change, and g (u j (t)) is a function
that is computed based on information that is available to
node u j at time t. The particular forms of the 7-l and g
functions are determined by the learning rule being employed
in the neural network model under consideration. Again, there
are analogous discrete-time representations for neural network
learning rules.

At this point, a discussion of time scales is in order.
If the neural model is to be treated as a true dynamical
system, then the system of coupled differential equations
that describe the activation and weight dynamics must be
executed simultaneously. In this case, the relaxation time for
the node activation values should be much faster than the
relaxation time of the weights. This ensures that the system
parameters are adapted based on the steady-state response
of the nodes, and not their transient response. Choosing
T~ >> T~ in (1) and (5) enforces this behavior (see [18] for
a more complete discussion of this issue). In many models,
however, the dynamics of learning are separated from the
activation dynamics of the nodes. In these models there are
typically two phases of operation: a training phase in which

c l a s s node {
protected

node-process np;
int numinputs, numoutputs;
double output, activity;
c l a s s input-edge *input-connect;
c l a s s outputrdge *outputloMect;

void Input(int InpntNum, double Val, tptr Tp);
void ComputeNodeOutput(tptr Tp);
void UpdateNodeWeights(doub1e StepSh, tptr Tp);
void PropagateOntputs(tptr Tp);
v ir tual double ComputeActivity(doub1e StepSue);
v ir tual double Computeoutput();
v ir tual void UpdateWeights(doub1e StepSi) ;
// remaining member funaionr not r h

public:

Fig. 3. The specification of the generic node class.

the network weights are adjusted, and a performance phase
in which the network weights are held constant while input
patterns are presented and network outputs computed. Since
the learning and activation dynamics are effectively separated
in this scheme, issues of time scales are not important.

IV. THE CONCURRENT BASE CLASSES

This section describes the basic components of the simu-
lation system. These include a base class that was developed
to represent a generic node, as well as another base class that
uses the node class to provide the architectural framework for
a network and the primitives for accessing network elements.
These classes provide the scaffolding upon which more com-
plex neural network models can be built through the use of
inheritance. Below we present the interfaces to the Concurrent
C t t base classes used in the simulation system, and we discuss
how the concurrent processes associated with these classes are
organized so as to exploit the parallelism available in neural
network models.

The Class Interfaces

We begin by discussing the manner in which network nodes
are represented. Fig. 3 shows the specification of node, a
class used to represent generic node elements. The simulation
system is constructed so that the node class must serve as
the base class for any specific node model that we wish to
simulate.

Many of the member functions in the node class require a
transaction pointer as one of their parameters. Thus, in Fig. 3
we use the typedef facility to declare a new type name. This
declaration makes the name t p t r a synonym for a pointer to
an asynchronous transaction. A pointer to any asynchronous
transaction containing an empty parameter list can be assigned
to a variable of type t p t r . The use of transaction pointers
allows process interaction points to be dynamically specified.
We will subsequently show how transaction pointers are used
as a synchronization mechanism in the simulation system.

Note that the protected member np in Fig. 3 is of type
n o d e g r o c e s s , a process discussed in detail below. Thus,
every object of class node will have a concurrent process
associated with it. In addition, the protected members a c t i v -

555 HEILEMAN et al.: A GENERAL FRAMEWORK

class network {
protected

seheduler-proceas scheduler;
int numnodes, numlayers;
int modes-perlayer;
int rtconnectionaatrix;
class node tmd;
// mining datu members not shown

void ArsignInputs(int Pattern”);
I/ mining member finciiona not shown

public:

h

Fig. 4. The specification of the network class.

ity and output are used to store the activity state xJ, and the
output state oJ of the node. The remaining protected members
are used to store information related to the input and output
connections associated with a node.

A number of the member functions in the node class are
declared as virtual. These include the functions that are used
to compute the activity and output of a node, and the function
used to update the weights incident to a node. These are the
functions that will be overloaded in derived classes allowing
specific node models to be simulated. The significance of using
virtual functions is that they allow a general neural network
class to be constructed independent of any particular node
model.

Specifically, class network in Fig. 4 is patterned after
the general model presented in Section 111, and will be used
through inheritance to implement specific neural network
models in Section V. Thus, network serves as a generic base
class for neural networks. Most of the data members in this
class are used to store information related to the architecture
of a network. For example, num-nodes stores the number of
nodes in the network, and nodesger-layer is a pointer
to a dynamically allocated array that stores the number of
nodes in each layer of the network. A two-dimensional array is
dynamically allocated and used to store the specific connection
pattern of a network-connection-matrix is a pointer to
this array. The variable nd is used to point to an array of
pointers to node objects. A pointer to any object derived
from the node class can be assigned to one of these array
elements. Furthermore, the virtual functions associated with
the class of the derived object can be invoked through the
pointers stored in this array. This allows multiple types of
nodes to exist within a single network, and also allows us
to write the member functions in the network class so that
they operate on generic node objects. When any one of these
member functions is actually called in a program, the form of
the nodes in the network will determine the actual operations
that are performed.

Finally, a concurrent process, scheduler, is associated
with the network class. The manner in which this process
interacts with other processes in the simulation system is
discussed next.

S i
Time

k

k+l

P3 ... S M

Fig. 5. An idealized “time-line” diagram that illustrates how process interact
during the typical phases of a single iteration of a neural network simulation.
P1-P.y are node processes, S is the scheduler process, and 32 is the main
process. A solid line indicates that a process is running, while a dotted line
indicates that it is waiting. Open arrows represent asynchronous transactions,
and closed arrows represent synchronous transactions. See the text for a
description of the process interactions.

ing inherent parallelism is called the distributed model compo-
nents approach [19]. In this approach, each component in the
system being simulated is assigned to a different process. This
decomposition technique is consistent with object-oriented
design in which each system component is represented by an
object.

When using a distributed model components decomposition
in discrete event simulation, specific schemes for synchro-
nization and deadlock handling must be employed. Different
approaches are taken depending upon whether the simulation
time advances in fixed increments (time-driven) or moves from
one event time to the next (event-driven), and whether these
advances occur synchronously or asynchronously. For neural
network simulations, we are concerned with using discrete
event simulation to simulate an inherently continuous-time
system by discretizing time. Thus, the time-driven approach
is most natural. Below we describe a synchronous time-driven
discrete event simulation approach to the simulation of neural
network models. In this approach, the simulation at a particular
time step typically proceeds in three phases: a state update
phase, which involves computing the outputs of the network
nodes at the current time; a communication phase, which
involves propagating these outputs: and a weight update phase,
in which the weights are modified according to the network
learning rule.

Recall that a process is associated with each node object,
and that a scheduler process is associated with a network
object. An illustration of how these processes interact during
the typical phases of a neural network simulation discussed
above is given in Fig. 5. This figure shows the “time-lines”
of the processes during a single iteration of the simulation. A

Process Scheduling and Synchronization

There are numerous ways to decompose a simulation for
processing on multiple processors. The decomposition tech-
nique that has shown the greatest potential in terms of exploit-

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

solid line indicates that a process is running, while a dotted
line indicates that a process is waiting. The time-lines of the
processes associated with the N nodes in a network are labeled
PI through PN, while the time-lines for the scheduler and main
processes are labeled S and M , respectively. The main process
is the process associated with the particular neural network
model being simulated. As mentioned in Section 11, processes
interact through transactions. In Fig. 5, an open arrow is used
to represent an asynchronous transaction, and a closed arrow
is used to represent a synchronous transaction. Note that only
the main and scheduler processes interact through synchronous
transactions. These interactions serve as the synchronization
mechanism that to enforces the proper linear ordering on the
processes in the simulation. These interactions are discussed
in more detail below.

Let us consider the three phases depicted in Fig. 5 that
occur during a typical iteration of a neural network simulation.
First, the output states of the nodes at simulated time IC are
computed, assuming an initial set of inputs has been supplied.
In order to maximize concurrency, the main process issues
a sequence of asynchronous transactions calls to the node
processes requesting them to compute their outputs. Because
these calls are asynchronous, the main process is not blocked
after issuing the initial transaction call, but instead may
continue sending transaction calls to other node processes. This
allows the computation of the node outputs to be overlapped
in time.

Before proceeding to the next phase (where the nodes
propagate their outputs to adjacent nodes) we must guarantee
that all nodes have computed their outputs at time IC. That is,
a synchronization step is required. If we proceed to the next
phase without synchronization, then it is entirely possible for
a node process to receive a request to propagate its output
before the request to compute its output has been received.
Thus, the output at time k - 1 would be propagated, instead
of the output at time I C , and the proper linear ordering for that
process is not maintained.

This synchronization step is implemented using a call back
mechanism. Each asynchronous transaction call issued by the
main process supplies a transaction pointer to the receiving
node process. At the completion of their processing activities,
each node process issues an asynchronous transaction call
through this transaction pointer. This transaction call is simply
an acknowledgment that can be received by the scheduler
process. Thus, after the main process issues the initial set
of asynchronous transaction calls, a synchronous transaction
call is made to the scheduler process. This call forces the
main process to wait until the scheduler process has received
acknowledgments from all node processes. At this point, the
synchronous transaction is completed, and the main process
may proceed to the next phase. Therefore, the main process
is blocked from proceeding to the next phase until all node
processes have completed the processing required to compute
their output state.

In the next phase, the main process again issues a series of
asynchronous transaction calls to the node processes-in this
case instructing them to propagate their output values to all
adjacent nodes in the network. Thus, in Fig. 5 we see that the

process spec schednler-process()

trans a s p c aclm();
{

1;

{

trans void wait(int nnmmsgs);

process body schednler-process()

for (;;I
lelect {

accept wait(nummsgs) {

accept rcli.0;
for (int i=o; i<nummags; i++) {

I
1
or terminate;

1
1

Fig. 6. The specification and body of the scheduler process.

main process issues these asynchronous transactions (again,
supplying a transaction pointer to each node process), and then
initiates a synchronous transaction with the scheduler process,
causing the main process to move into a wait state. Each
node process then passes its output, as well as a transaction
pointer, to its adjacent nodes. When a node receives an output
value, it notifies the calling process that it has received the
output by invoking an asynchronous transaction through the
transaction pointer provided by the calling process. This call
back mechanism allows each node to determine when all
of its outputs have been received. At this point the node
process informs the scheduler process that it has completed
communicating its outputs. This is accomplished by invoking
an asynchronous transaction through the transaction pointer
supplied by the main process. When the scheduler process
is notified that all nodes have propagated their outputs, it
completes the synchronous transaction with the main process,
allowing the main process to move on to the next phase.
The use of the call back mechanism in this phase allowed
the communication events required to propagate node output
values to be overlapped in time.

In the final phase, the network weights are adjusted through
learning. This phase is similar to the first phase in that the
main process issues a series of asynchronous transaction calls
that instruct each node to adjust the weights that are incident to
it according to its learning rule. Then the main process moves
into a wait state until this processing is completed. The call
back mechanism is also employed here so that the computation
required by each node process can be overlapped in time.

The scheduler process is given in Fig. 6. This process
contains one synchronous transaction wait (1, and one asyn-
chronous transaction ackn () . The process body is composed
of an infinite loop that contains a select statement. The select
statement is used to select between alternative actions. In
this case there are two alternatives: either accept a wait()
transaction call, or terminate the process. The terminate alter-
native will only be executed if either all other processes in
the simulation have terminated, or they are all waiting at a
terminate option.

As was illustrated in Fig. 5, the scheduler process is
used to synchronize the various phases of the simulation.
The synchronous transactions issued by the main process in
Fig. 5 are wait () transactions. After this transaction call is

HEILEMAN ef ai.: A GENERAL FRAMEWORK 551

proem spec node-p-r(claas node *nptr, int numinputs, int num-outputs,
input-edge *input.connect, output-edge toutput-connect)

tram uync input(int inputnum, double 4, tptr np-ackn);
traol uync ackn();
trans uync compute-output(doub1e stepsize, tptr tp);
trans uync propagate-outputa(tptr tp);
trans uync update-weights(doub1e stepsize, tptr tp);
11 remaining tnuuactionr not s h m

t

1;

Fig. 7. The specification of the node process.

process body node.process(nptr, numinputs, num-outputs, input-connect, output.connect)
f

i n t i, num-trans;
double activity=O, output=O;
tptr np.ackn=((process node.process)c_mypid()).ackn;
f o r (;;) i

select {
accept compute.output(step>ize, tp) {

activity = nptr-rComputeActivity(stepsize);
output = nptr-ComputeOutput(step.size);
(*tp)(); / / transaction call to scheduler process

}
or accept propagatesutputs(tp) {

num-trans = 0;
f o r (i=O; i<num-outputs; i + t) {

i f (*(output-connect[i].id) == nptr) / I self-connection
input.connect[output.connect[i].input.num].value = output;

(i(output.connect[i].id))-Input(output.connect[i].input.num, output, np-ackn);
num-trans++;

else {

1
}
f o r (i=O; i<num.trans; i++)

(rtp)();
accept ackn();

/ / transaction call to scheduler process
>
or accept input(inputmum, Val, tp) {
input~connect[input.num].value = val;
(*tp)(); // transaction call to a node process

1
or accept update.weights(stepsize, tp) {

nptr-+UpdateWeights(stepsize);
(*tp)();

or terminate;

I / transaction call to scheduler process
1

1
}
i

Fig. 8. The body of the node process.

received, the scheduler process remains in a loop until the
appropriate number of asynchronous ackn () transactions have
been received from the node processes. At this point, a reply
is sent to the main process so that it may continue processing
(i.e., the synchronous wait () transaction is completed).

The most important processes in the simulation system are
the node processes. The process specification and body of the
node process are given in Figs. 7 and 8, respectively. Note that
a pointer to the node object associated with the node process
is supplied as an input parameter.

Below we discuss the transactions responsible for the three
phases in the neural network simulation discussed above. First
consider the asynchronous compute-output () transaction.
In Fig. 7 we see that one of the parameters that must be
supplied to this transaction is a transaction pointer. This is
the transaction pointer that is supplied by the main process,
and used to call the ackn() transaction in the scheduler
process. In Fig. 8, the body of the accept alternative for this

transaction involves three operations. The first updates the
activity of a node according to the value returned from the
ComputeActivity () member function. Because Compute-
Activity() is a virtual function, the type of object assigned
to the nptr pointer will determine what operation is actually
performed. Next, the output of the node is computed using
the Computeoutput () virtual member function. Again, the
operation that is used to compute the output is dependent
upon the type of object assigned to the nptr pointer. Finally,
the transaction associated with the transaction pointer tp is
invoked, sending an acknowledgment to the scheduler process
that a particular node has completed its output computation.

In the next phase, shown in Fig. 5, the nodes communicate
their outputs to adjacent nodes. This is accomplished using
the propagate-outputs () transaction in the node process.
Note in Fig. 7 that this transaction accepts a transaction pointer
as a parameter. Fig. 8 shows the accept alternative for the
propagate-outputs () transaction. Two loops are involved.
The first iterates over the number of output connections that
a node has, and if a connection is a self-connection, then no
communication event is necessary. The current output of the
node is simply assigned to the appropriate input of the node. If
the connection is to another node, then the Input () member
function of the adjacent node object is called and supplied with
a transaction pointer. This member function simply calls the
input () transaction of the process associated with that object.
The accept alternative for this transaction is also shown in
Fig. 8. It involves two statements: the first assigns the output
value supplied as a parameter in the transaction call to the
appropriate input connection, the next invokes the transaction
associated with the transaction pointer that was also supplied
as a parameter. Returning to the propagate-outputs ()
accept alternative in Fig. 8, we see that the second loop
executes until every node process that was passed the output
value returns an acknowledgment that the output was received.
After this loop has completed, the transaction pointer supplied
by the main process is used to communicate to the scheduler
process that a particular node has completed the propagation
of its outputs.

The final phase shown in Fig. 5 is implemented using the
update-weights () transaction shown in Fig. 7. In the accept
alternative for this transaction, shown in Fig. 8, the first state-
ment calls the virtual member function Updateweights ()
associated with the node object, and the second statement
notifies the scheduler process when the node has completed
updating its weights.

The next section demonstrates how the concurrent base
classes presented in this section can be used to simulate
specific neural network models.

V. A REPRESENTATIVE MODEL
AND ITS PARALLEL SIMULATION

Below we demonstrate how the simulation environment
presented in the previous section can be used to simulate a
specific neural network model. We then present simulation
results obtained from this model’s execution on a parallel
computer. The model we chose to simulate is intended to

I
558

.
0 0 * . .

VY+I vu+a

r +
Bottom-up

Topdown Weight.
Welghb + - + %a---- -

0 0 - . . 0 ro
Gain 01 or +’
Control

Global Bus
I .

......... ?El ?.%n ;..........I
1

. .

*

...

c ...

.-., C.

Fig. 9.
simulations were executed on.

A schematic diagram of the parallel computer that the concurrent

demonstrate the flexibility of this simulation system. In par-
ticular, a continuous-time model that has a relatively complex
weight-update rule, and whose nodes are not homogeneous
was chosen. The simulation environment was also used to
implement discrete-time neural network models (e.g., the
discrete-time Hopfield network [20]).

The parallel computer used to execute these simulations is
depicted in Fig. 9. The architecture is a general-purpose bus-
based shared memory multiprocessor system. Each processor
in the system is a single-board computer (SBC) containing a
25 MHz Motorola 68030 microprocessor, a Motorola 68882
floating-point unit, and 8 Mb of on-board RAM. Access to
local memory occurs via the SBC’s local bus-this limits
contention for the global bus. For the simulations performed
here, the system was configured with six SBC’s. Each SBC
has a multi-tasking operating system that offers simple task
management services, such as task creation and destruction
[21]. Concurrent C++ is implemented on top of this operating
system, and each Concurrent C++ process is mapped to a task
in the underlying operating system. This allows the Concurrent
C++ process to use the underlying SBC operating system
facilities in a natural fashion, and limits the context switching
overhead.

The architecture of this machine, as well as the manner
in which Concurrent C++ is implemented, favors simulations
that involve coarse-grained processes (i.e., processes in which
the ratio of the amount of computation to the number of
communication events is large). In order to increase the
granularity of the processes in the simulation system, the
node process (see Fig. 8) was modified so that the prop-
agate-outputs () transaction only initiates communication
events with other processes in the system if the output of the
node associated with the transaction call has changed since the
previous call to propagate-outputs (1. This optimization
allowed significant performance improvements in many of the
networks we simulated. We now present the neural network
model that is used below to demonstrate the use of the
simulation system.

The ARTl Network
A neural network architecture for the learning of recognition

categories was derived by Carpenter and Grossberg [22]. This
architecture was termed ARTl in reference to the adaptive

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

Fig. 10. The architecture of an ARTl network.

resonance theory introduced by Grossberg [23]. It was shown
that ARTl self-organizes and self-stabilizes its recognition
codes in response to arbitrary orderings of arbitrarily many
binary input patterns [22]. The neural network simulated here
is actually an extension of the of the ARTl network that, under
certain parameter constraints, behaves exactly like Carpenter
and Grossberg’s original model [24], [25]. These extensions
allow the ARTl model to be implemented solely as a set of
concurrently executing nonlinear differential equations. (The
simulation system can also be used to implement the original
model if it is so desired.)

The architecture of this augmented ARTl network is shown
in Fig. 10. It consists of two subsystems. The attentional
subsystem contains an input representation field F1, as well
as a category representation field F2. The orienting subsystem
contains a reset node that interacts with the attentional sub-
system to mediate an internally controlled search process. In
particular, the F1 field contains a single layer of nodes that are
used to represent an input pattern. The F2 field contains two
layers of nodes. The first layer of nodes is used to categorize or
code the input patterns appearing at the nodes in the F1 field,
and the second layer (the 6 nodes in Fig. 10) are inhibitory
nodes that are used in conjunction with the reset node (w,
in Fig. 10) to ensure that the proper nodes in the first layer
of the F2 field are chosen to code the input patterns. Each
node in the F1 field is connected via bottom-up weights to all
nodes in the first layer of the F2 field, and each node in the
first layer of the F2 field is connected via top-down weights
to each of the F l field nodes. Furthermore, each inhibitory
node in the second layer of the F2 field is connected to a
single node in the first layer of the F2 field, and the reset
node vT receives input from both the input pattern and the F1
field nodes, and passes its output to the inhibitory nodes in
the F2 field. Below we summarize the form of the differential
equations that define this ARTl model. These equations are
presented in more detail in [22] and [25].

The activity of the network nodes in the F1 field and the first
layer of the F2 field is described by the following differential
equation:

d
d t

T,-X = --z + (1 - Az)J+ - (B + Cz)J- (6)

HEILEMAN et al.: A GENERAL FRAMEWORK

class theaholdnode : public node {
protected

public:
double upper-bound, lowerhound, threshold-value;

void Computeoutput();
// remaining membererfunctions not shown

1;

{
void thresholdnode::ComputeOutput()

if (activity 2 threshold-value)

else
output = upperhound;

output = lowerhound;
1

Fig. 11. The threshold node class.

where x is the nodal activity; A, B, and C are network
parameters; and J+ and J - represent the total excitatory and
inhibitory net input to the node, respectively. Equation (6) is
called a shunting differential equation because J+ J - multiply
the node of activity x . Notice that if A > 0 and C > 0,
then the activity of the node remains in the bounded range
[-BC1, A-’] no matter how large J+ and J - become. Note
also that the activity of the node decays to a resting level of
0 when J+ = J - = 0. J+ and J - are computed differently
depending upon whether the node is in the F1 or F2 field. In
both cases, these computations involve nonlinearities.

The activity of inhibitory node .itj in the F2 field satisfies

where

and Ii is the ith component of the input pattern.
The reset node satisfies

M M

where P and Q are network parameters, and U is the unit
step function.

The value of the bottom-up weight, w;j, associated with
an edge connecting node vi in the F1 field to node v i in
the first layer of the F2 field is determined by the following
differential equation:

(9)

where K is a network parameter, and the exact expression for
E;j can be found in [22].

A similar differential equation determines the value of the
top-down weights wj;. A description of how the parameters
in these differential equations should be chosen, as well as
theorems relating the initial value of the weights to network
performance, can be found in [22] and [25].

Simulation Results

All of the nodes in the ARTl network compute their
outputs using the hardlimiting threshold function of (3). The
threshold-node class shown in Fig. 11 was created to

559

c l a s s Flmode : public thresholdnode {
protected

double A, B, C, D, tau, K, E, wt-tau;
ode* W-eq;
odett w-diEeq;

void ComputeActivity(doub1e Stepsize);
void UpdateWeighti(doub1e Stepsize);
//-king member finetiom not shown

public:

1;

Fig. 12.
network.

The class specification for the nodes in the F1 field of the ARTl

represent these types of nodes. Specifically, this class was
created by inheriting the generic node class. Notice that
additional data members were added to represent the p, y,
and S values for the threshold node (i.e., upper-bound stores
p, lower-bound stores y, and threshold-value stores 6).
The body of the virtual Computeoutput () member function
is also shown in Fig. 11.

Each specific node type in the ARTl network simulation
was created by inheriting the threshold-node class. As an
example, consider the class specification of the F1 field nodes
shown in Fig. 12. Most of the protected data members in this
class are used to store the parameter values found in (6) and
(9). In addition, two of the data members store differential
equation objects that are used in the numerical solution of
(6) and (9). Specifically, ode is the base class associated
with a hierarchy of numerical methods for solving ordinary
differential equations. In Fig. 12, diff-eq is a pointer to
an object of this base class. This object pointer is used
by the ComputeActivity () member function to compute
a node’s activity according to (6). Thus, the form of the
object assigned to the dif f-eq pointer will determine what
numerical technique is used to approximate the differential
equation. Likewise, the w-diff-eq data member in Fig. 12 is
used to store the address of a pointer to an array of pointers to
ode objects. These objects are used by the Updateweights ()
member function to approximate the differential equations
that determine the weight values associated with impinging
connections. The significance of this approach is that the
classes of nodes used in the simulation of the ARTl network
do not have to be modified and recompiled if one wishes
to experiment with different numerical techniques. Instead,
pointers to objects of the new technique can be assigned
to these data members, and they will be used in computing
the activity and weight values of the node. A similar class
specification exists for each type of node in the ARTl network
simulation.

The ARTl neural network class shown in Fig. 13 is created
by inheriting the network class given in Fig. 4. An additional
member function is also added so that the network can iterate
its node and weight equations according to the model presented
above. The body of this Iterate() member function is
shown in Fig. 13. This member function is responsible for
initiating each of the phases depicted in Fig. 5. First, every
node in the network is instructed to compute its output by
invoking the ComputeNodeOutput () member function for
each node object. This member function is responsible for
invoking the compute-output () transaction of the process

I
560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

c las s artlam : public ann {
public:

void Iterate(doub1s StepSixe);
// mining member erfunctions not shown

1;

{
void artlann::Iterate(doubls StepSk)

int n;
tptr tp = acheduler.ackn;
for (n=O; n<numnodes; n++)

schednler.wait(numnodea);
for(n=O; n<numnodes; n++)

scheduler.wait(numnodes);
tor(n=O; n<numsodea; n++)

scheduler.wait(numnodes);

nd[n]+ComputeNodeOutput(StepSue, tp);

nd[n]+PropagateOutputs(tp);

nd[n]+UpdateNodeWeights(StepSi, tp);

1

ti
o f p r o c e = r o r s

Fig. 13. The ARTl network class.

associated with a node object. As discussed previously, this
transaction in turn invokes virtual member functions that
compute the node’s output according the type of node it is.
Next, the scheduler process associated with the network
(see Fig. 4) is instructed to wait until all nodes have completed
computing their outputs. Each subsequent phase in the iteration
proceeds in a similar manner.

In order to demonstrate the usefulness of these classes, an
ARTl network containing 4 nodes in the F1 field, a reset node,
and 8 nodes in the F2 field (4 nodes in the first layer and 4
nodes in the second layer) was simulated. The node differential
equations were numerically approximated using an ode object
that implements the Runge-Kutta method. A step size of
was used. All of the node activity and weight values were
updated at each time step. Three input patterns were presented
to the network: I’ = 1000, I 2 = 0000, and I 3 = 1100. 1’ was
presented for a simulated time of 1 s, followed by I 2 which
was presented for a simulated time of 0.2 s, and then I 3 which
was also presented for 0.2 s. This results in a total of 140000
iterations or time steps. Note that 1’ is a null pattern that is
used between the presentation of other “interesting” patterns.
That is, the presentation of pattern 1’ can be interpreted as
the absence of an input pattern.

The network parameters for this simulation were chosen to
satisfy the constraints presented in [25]. Fig. 14 shows the
relative speedups that were obtained on the parallel computer
shown in Fig. 9 utilizing from one to six processors. Speedup
values for N processors were calculated by determining the
ratio of the time taken to execute a simulation on a single
processor to the time taken to execute the same simulation
on N processors. The curve marked with 0’s in Fig. 14 is for
simulations in which the outputs of the nodes were propagated
at each time step, while the curve marked with 0’s is for the
optimized simulations in which the output of a node was only
propagated if it was different from its output at the previous
time step. Note that a speedup of over 2 is obtained with only
four processors using the optimized simulation.

A further demonstration of the performance of these simula-
tions is given in Fig. 15. In this figure the processing speed, in
terms of iterations per second, is shown for both the optimized
and nonoptimized approaches. An iteration is defined as the

Fig. 14. Relative speedup curves for the concurrent ARTl simulations. The
0’s mark the nonoptimized simulations, and the U’s mark the optimized
simulations.

55 I I I I I I

- 7
i/

’-
o f p r o c a r r o r a

Fig. 15. Processing speed versus the number of processors used in the
concurrent ARTl simulations. The 0’s mark the nonoptimized simulations,
and the 0’s mark the optimized simulations.

processing required to compute one simulated time step (see
Fig. 5). Note that for a single processor, the optimized simula-
tion is more than 1.5 times as fast as the nonoptimized solution.
Furthermore, as each additional processor is added (up to
four) this performance difference increases. For more than four
processors, the performance difference is constant. This figure
demonstrates how the simulation techniques presented here
can be used to reduce the communication overhead in parallel
implementations of neural network models.

Additional information about processor utilization during
these simulations is contained in Table I. Table I(a) shows
the percentage of time the processors were busy during the
six simulation runs in which the outputs of the nodes were
propagated at each time step.

This includes the time that a processor is waiting to be-
come bus master. Lower number processors have priority for
becoming bus master (i.e., bus mastership is granted via a
daisy chain). Notice that higher numbered processors in Table
I(a) are busier than the corresponding processors in Table I(b).

561 HEILEMAN et al.: A GENERAL FRAMEWORK

processors
1

TABLE I

IN WHICH THE OUTPUT OF NODES WERE PROPAGATED AT EACH
(a)PROCESSOR UTILIZATION DURING THE SIMULATION RUNS

TIME STEP. (b) PROCESSOR UTILIZATION DURING THE SIMULATIONS
RUNS IN WHICH THE OUTPUT OF NODES WERE PROPAGATED ONLY IF
THEIR OUTPUTS DIFFERED FROM THOSE AT THE PREVIOUS TIME STEP.

~~ ~

%busy 1 processor
1 I 2 3 4 1 5 1 6

1 0 0 1 - 1 - 1 - I - I -

6 98 I 95 1 87 I 74 I 71 I 82

2
3
4

I

98 87
94 92 72
88 73 72 87

This indicates that performance degradation is related to bus
contentions during interprocessor communications. However,
if bus contention was the only factor limiting parallelism, then
the higher numbered processors (with lower priority for bus
access) would be the busiest. This does not happen. In the
simulations using six processors, the first two processors are
the busiest. This indicates that there is a degree of program-
limited parallelism in these simulations.

In order to gain a better understanding of the type of
performance that can be expected from this simulation system
for different neural network models, let us consider Fig.
5 again. Recall that in this figure a solid line indicates a
running process, while a dashed line indicates that the process
is waiting. The horizontal arrows in this figure represent
transaction calls. That is, they represent the communication
overhead associated with the simulation. If we assume a
fixed amount of communication overhead, then the amount
of speedup that can be obtained is directly related to the
degree of overlap (in time) of the solid lines in this figure. The
more compute intensive the nodes’ processing activities are,
the longer the solid lines in Fig. 5 become, and consequently
the degree of overlap increases. This means that relative to the
communication overhead, a larger percentage of the processing
time is devoted to parallel computation. Thus, we would expect
that more complicated (i.e., compute intensive) neural network
models would achieve higher speedup results. This expected
behavior has been verified by results obtained from additional
simulations.

VI. CONCLUSION
A framework for the concurrent simulation of neural net-

work models as discrete event nonlinear dynamical systems

was presented, and the simulation of a specific neural net-
work model was demonstrated on a general-purpose parallel
computer. The basic components of the simulation system
are two generic base classes that capture the functionality
of general neural network models. Specific neural network
models are created through the inheritance of these classes.
The most complex issues involved in the development of the
simulation system were those related to the synchronization
of the concurrent processes in the simulation, as well as
deadlock avoidance. The base classes encapsulate these con-
current processes, thereby allowing users to construct novel
neural network models from a higher level of abstraction.
Specifically, the user does not have to deal with synchroniza-
tion and deadlock avoidance issues when constructing neural
network models. The flexibility of this system was exhibited
by simulating a specific nontrivial neural network model on a
general-purpose parallel computer.

The parallel computer used to execute the simulation pro-
gram was a bus-based shared memory system. The main
advantage of these types of systems is that they are easy to
build with off-the-shelf components; however, bus contention
is a limiting factor in bus-based parallel computers. Typically
only a small number of processors can be effectively utilized
by such computer systems. The use of additional processors
leads to diminishing returns in terms of processor utiliza-
tion, and therefore adversely affects speedup. The results we
obtained indicate that the simulation system would scale to
larger parallel computers that utilize switching networks for
interprocessor communication.

It should be mentioned that this system can also be used
to simulate neural networks whose learning rule is based on
the popular back-propagation algorithm [26]. Although the
back-propagation learning rule violates the locality constraint
discussed in Section 111, a number of techniques have been
developed that remove this problem (see [27] and [28]).
These forms of back-propagation learning that employ local
techniques are well-suited for the concurrent simulation system
discussed here.

ACKNOWLEDGMENT

The authors wish to thank W. Horne and J. Howse for
reading the manuscript and offering valuable comments. The
authors also thank D. Hush, C. Abdallah, E. Schamiloglu, and
G. Donohoe of the BSP Group for their helpful discussions
and suggestions.

REFERENCES

[l] DARPA Neural Network Study, B. Widrow, Study Director. Fairfax,
VA AFCEA International Press, 1988.

[2] J. Alspector and D. Hammerstrom,“Electronic and optical implementa-
tions sessions,” in Proc. Int. Joint Conf: Neural Networks,, vol. l , pp.

[3] R. P. Lippmann et al., Advances in Neural Information Processing
San Mateo, CA: Morgan Kaufmann, 1991, pp. 993-1052.

[4] C. Mead, Analog VLSI and Neural Systems. Reading, M A Addison

[5] E. SBnchez-Sinencio, Ed., IEEE Trans. Neural Networks, Special Issue

[6] G. L. Heileman et al., , “A neural net associative memory for real-time

415-592, 1991.

Systems 3,

Wesley, 1989.

on Neural Network Hardware, vol. 2, pp. 192-251, 1991.

applications,” Neural Computation, vol. 2, pp. 107-1 15, 1990.

- - - It 1 -

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

[7] D. A. Pomerleau et al., “Neural network simulation at WARP speed:
How we got 17 million connections per second,” in Proc. IEEE Int.
Conf. Neural Networks, vol. 11, pp. 143-150, 1988.

[8] X. Zhang et al., “An efficient implementation of the back-propagation
algorithm on the connection machine CM-2, in Advances in Neural In-

[28] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Proc. lnt. Joint Con& Neural Networks,, vol. 1, pp. 593406, 1989.

.-
formation Processing Systems 2. San Mateo, CA: Morgan Kaufmann,

[9] N. Gehani and W. D. Roome, “Concurrent C++: Concurrent program-
ming with class(es),” in Software4ractice & Experience, vol. 18, pp.

1990, pp. 801-809.

.-
1157-1117, 1989.’

1991.
[IO] S. B. Lippman, C++ Primer, 2nd ed. Reading, MA: Addison-Wesley,

[l l] B. Stroustrup, The C + + Programming Language, 2nd ed. Reading,
MA: Addison-Wesley, 1991.

[12] N. Gehani and W. D. Roome, The Concurrent C Programming Lan-
guage.

[13] B. Meyer, Object-oriented Software Construction. Englewood Cliffs,
NJ: Prentice Hall, 1988.

[14] C. Hoare, Communicating Sequential Processes. Englewood Cliffs,
NJ: Prentice Hall, 1985.

[15] P. Brinch Hansen, “Distributed processes: A concurrent programming
concept,” Communications of the ACM, vol. 21, 1978.

[161 G. Agha, “Concurrent object-oriented programming,” Communications
of the ACM, vol. 33, pp. 125-141, 1990.

[17] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Networks, vol. 1, pp. 17-61, 1988.

[18] F. J. Pineda, “Dynamics and architecture for neural computation,” J.
Complexity, vol. 4, pp. 216-245, 1988.

[19] R. Righter and J. C. Walrand, “Distributed simulation of discrete event
systems,” Proc. IEEE, vol. 77, pp. 99-113, 1989.

[20] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,’’ in Proc. National Academy of Science
USA, vol. 79, pp. 2554-2558, 1982.

[21] W. D. Roome, “The CTK: An efficient multi-processor kernel,” AT&T
Bell Laboratories, 1986.

[22] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for
a self-organizing neural pattern recognition machine,” Computer Vision,
Graphics, and Image Processing, vol. 37, pp. 54-1 15, 1987.

1231 S. Grossberg, “Adaptive pattern recognition and universal recoding 11:
Feedback, expectation, olfaction, and illusions,” Biological Cybernetics,

[24] G. L. Heileman and M. Georgiopoulos, “The augmented ART1 net-
work,” in Proc. Int. Joint Conf. Neural Networks, pp. 467472, 1991.

[25] ~, “A real-time representation of the ART1 network,” rep. no.
EECE 91-001, Univ. New Mexico, Jan. 1991.

[26] D. E. Rumelhart et al., “Learning internal representation by error prop-
agation,” pp. 318-362, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. I : Foundations. Cambridge,
MA: MIT Press, 1986.

[27] L. B. Almeida, “A learning rule for asynchronous perceptrons with
feedback in a combinatorial environment,” in Proc. IEEE Int. Conf:
Neural Networks, vol. 11, pp. 609-618, 1987.

Summit, NJ: Silicon Press, 1989.

vol. 23, pp. 187-202, 1976.

Gregory L. Heileman (S’86-M’89) received the
B.S. degree from Wake Forest University in 1982,
the M.S. degree in biomedical engineering and
mathematics from the University of North Carolina
in 1986, and the Ph.D. degree in computer engineer-
ing from the University of Central Florida in 1989.

He is currently an Assistant Professor in the
Electrical and Computer Engineering Department at
the University of New Mexico, Albuquerque. His
research interests include neural networks, pattern
recognition, learning theory, parallel computation,

Dr. Heileman is a member of the IEEE Computer Society, the Association
and object-oriented simulation

for Computing Machinery, and the International Neural Network Society.

Michael Georgiopoulos (S’84-M’86) received the
Diploma in electrical engineering from the National
Technical University of Athens, Greece, in 1981,
and the M.Sc. and Ph.D. degrees in electrical engi-
neering from the University of Connecticut, Storrs,
in 1983 and 1986, respectively.

In 1987, he joined the University of Central
Florida, Orlando, where he is now an Assistant Pro-
fessor in the Department of Electrical Engineering.
His research interests are in the areas of spread
spectrum communications and neural networks.

Dr. Georgiopoulos is a member of the Technical Chamber of Greece and
the International Neural Network Society.

William D. Roome (S’72-M’74) received the B.S.
and Ph.D. degrees in electrical engineering from
Cornel1 University, Ithaca, NY, in 1970 and 1974,
respectively.

He has been a member of the technical staff
at AT&T Bell Laboratories since 1974. He has
also worked on Concurrent C, a time-oriented file
server, a shared-memory database machine, and
several real-time kernels. His current research inter-
ests include operating systems, distributed systems,
programming languages, and database machines

